588 research outputs found

    Enhancement in Electro-Optic Properties of Dynamic Scattering Systems through Addition of Dichroic Dyes

    Full text link
    Electro-optic properties of dynamic scattering in homeotropically aligned pure and dichroic dye-doped nematic liquid crystal samples are examined. The optical properties of the two systems are quantified using transmission properties of scattered and unscattered as a function of amplitude and frequency of an applied voltage. Auto-correlation of the scattered signal at different applied voltages is used to compare the decay times in the two systems. Lastly, the histogram of the scattered signal reveals a wavevector dependent large light scattering event. The dye-doped system shows a significant enhancement of light blocking property in both normal and off-axis light propagation. The characteristics of the system are compared to other scattering technologies. The results suggest that dye-doped system can overcome shortcomings in scattering based devices used for near-eye applications

    Effect of omitting teat preparation on bacterial levels in bulk tank milk

    Get PDF
    peer-reviewedThe objective of this study was to investigate the effect of omitting teat preparation prior to milking on the bacterial levels in milk directly after milking and after a period of milk storage. Eighty Holstein–Friesian dairy cows were assigned to two pre-milking teat preparation treatments: (i) washing of teats and drawing of foremilk, followed by drying with paper towels and (ii) no teat preparation. Individual cow measurements included individual quarter somatic cell count (SCC) and teat swabs for the presence of Bacillus cereus sensu lato. On seven monthly occasions, all milk produced over a 24 h period from each treatment group was segregated into a separate tank and sampled. Sub-samples of this milk were stored at 4 °C for 0, 24, 48 and 72 h, and the milk was analysed for total bacterial count (TBC), thermoduric bacterial count and the presence of B. cereus s. I. Individual quarter SCCs were numerically higher for unprepared teats (159,000 cells/mL) compared with those for prepared teats (133,000 cells/mL; P < 0.09). A similar trend was observed for bulk tank SCC, with the unprepared teat treatment tending to have a higher SCC (155,857 cells/mL) compared to the prepared teat treatment (102,286 cells/mL; P< 0.09). The TBC was not significantly higher from unprepared teats (3,152 cfu/ mL) compared with milk from prepared teats (1,678 cfu/mL) (P< 0.10). Milk TBC was significantly higher after storage for 72 h compared with that after 0, 24 and 48 h (P< 0.01). The results of this study indicate that under good hygienic conditions in an outdoor grazing situation, the omission of pre-milking teat preparation has a minimal effect on TBC and SCC

    Impacts of seasonal housing and teat preparation on raw milk microbiota: a high-throughput sequencing study

    Get PDF
    In pasture-based systems, changes in dairy herd habitat due to seasonality results in the exposure of animals to different environmental niches. These niches contain distinct microbial communities that may be transferred to raw milk, with potentially important food quality and safety implications for milk producers. It is postulated that the extent to which these microorganisms are transferred could be limited by the inclusion of a teat preparation step prior to milking. High-throughput sequencing on a variety of microbial niches on farms was used to study the patterns of microbial movement through the dairy production chain and, in the process, to investigate the impact of seasonal housing and the inclusion/exclusion of a teat preparation regime on the raw milk microbiota from the same herd over two sampling periods, i.e., indoor and outdoor. Beta diversity and network analyses showed that environmental and milk microbiotas separated depending on whether they were sourced from an indoor or outdoor environment. Within these respective habitats, similarities between the milk microbiota and that of teat swab samples and, to a lesser extent, fecal samples were apparent. Indeed, SourceTracker identified the teat surface as the most significant source of contamination, with herd feces being the next most prevalent source of contamination. In milk from cows grazing outdoors, teat prep significantly increased the numbers of total bacteria present. In summary, sequence-based microbiota analysis identified possible sources of raw milk contamination and highlighted the influence of environment and farm management practices on the raw milk microbiota. IMPORTANCE: The composition of the raw milk microbiota is an important consideration from both a spoilage perspective and a food safety perspective and has implications for milk targeted for direct consumption and for downstream processing. Factors that influence contamination have been examined previously, primarily through the use of culture-based techniques. We describe here the extensive application of high-throughput DNA sequencing technologies to study the relationship between the milk production environment and the raw milk microbiota. The results show that the environment in which the herd was kept was the primary driver of the composition of the milk microbiota composition

    Molecular Characterization of trans -Golgi p230: a human peripheral membrane protein encoded by a gene on chromosome 6p12-22 contains extensive coiled-coil α-helical domains and a Granin Motif

    Get PDF
    Using autoantibodies from a Sjögren's syndrome patient, we have previously identified a 230-kDa peripheral membrane protein associated with the cytosolic face of the trans-Golgi (Kooy, J., Toh, B. H., Pettitt, J. M., Erlich, R. and Gleeson, P. A. (1992) J. Biol. Chem. 267, 20255-20263). Here we report the molecular cloning and sequence analysis of human p230 and the localization of its gene to chromosome 6p12 22. Partial cDNA clones, isolated from a HeLa cell cDNA library using autoantibodies, were used to obtain additional cDNAs, which together span 7695 base pairs (bp). The p230 mRNA is approximately 7.7 kilobases. Two alternatively spliced mRNAs for p230 were detected. These differed by 21- and 63-bp insertions in the 3'-sequence, resulting in differences in amino acid sequence at the carboxyl terminus. The predicted 261-kDa protein is highly hydrophilic with 17-20% homology with many proteins containing coiled-coil domains. Apart from two proline-rich regions (amino acids 1-117 and 239-270), p230 contains a very high frequency of heptad repeats, characteristic of alpha-helices that form dimeric coiled-coil structures. p230 also includes the sequence ESLALEELEL (amino acids 538-546), a motif found in the granin family of acidic proteins present in secretory granules of neuroendocrine cells. This is the first report of a cytosolic Golgi protein containing a granin motif. The structural characteristics of p230 indicate that it may play a role in vesicular transport from the trans-Golgi

    Learning and teaching mathematics K-7: Book 3

    Get PDF

    Tracking the Dairy Microbiota from Farm Bulk Tank to Skimmed Milk Powder.

    Get PDF
    peer-reviewedMicroorganisms from the environment can enter the dairy supply chain at multiple stages, including production, milk collection, and processing, with potential implications for quality and safety. The ability to track these microorganisms can be greatly enhanced by the use of high-throughput DNA sequencing (HTS). Here HTS, both 16S rRNA gene amplicon and shotgun metagenomic sequencing were applied to investigate the microbiomes of fresh mid- and late-lactation milk collected from farm bulk tanks, collection tankers, milk silos, skimmed milk silos, a cream silo, and powder samples to investigate the microbial changes throughout a skim milk powder manufacturing process. 16S rRNA gene analysis established that the microbiota of raw milks from farm bulk tanks and in collection tankers were very diverse but that psychrotrophic genera associated with spoilage, Pseudomonas and Acinetobacter, were present in all samples. Upon storage within the whole-milk silo at the processing facility, the species Pseudomonas fluorescens and Acinetobacter baumannii became dominant. The skimmed milk powder generated during the mid-lactation period had a microbial composition that was very different from that of raw milk; specifically, two thermophilic genera, Thermus and Geobacillus, were enriched. In contrast, the microbiota of skimmed milk powder generated from late-lactation milk more closely resembled that of the raw milk and was dominated by spoilage-associated psychrotrophic bacteria. This study demonstrates that the dairy microbiota can differ significantly across different sampling days. More specifically, HTS can be used to trace microbial species from raw milks through processing to final powdered products.IMPORTANCE Microorganisms can enter and persist in dairy at several stages of the processing chain. Detection of microorganisms within dairy food processing is currently a time-consuming and often inaccurate process. This study provides evidence that high-throughput sequencing can be used as an effective tool to accurately identify microorganisms along the processing chain. In addition, it demonstrates that the populations of microbes change from raw milk to the end product. Routine implementation of high-throughput sequencing would elucidate the factors that influence population dynamics. This will enable a manufacturer to adopt control measures specific to each stage of processing and respond in an effective manner, which would ultimately lead to increased food safety and quality

    Detection of presumptive Bacillus cereus in the Irish dairy farm environment

    Get PDF
    peer-reviewedThe objective of the study was to isolate potential Bacillus cereus sensu lato (B. cereus s.l.) from a range of farm environments. Samples of tap water, milking equipment rinse water, milk sediment filter, grass, soil and bulk tank milk were collected from 63 farms. In addition, milk liners were swabbed at the start and the end of milking, and swabs were taken from cows’ teats prior to milking. The samples were plated on mannitol egg yolk polymyxin agar (MYP) and presumptive B. cereus s.l. colonies were isolated and stored in nutrient broth with 20% glycerol and frozen at -80 °C. These isolates were then plated on chromogenic medium (BACARA) and colonies identified as presumptive B. cereus s.l. on this medium were subjected to 16S ribosomal RNA (rRNA) sequencing. Of the 507 isolates presumed to be B. cereus s.l. on the basis of growth on MYP, only 177 showed growth typical of B. cereus s.l. on BACARA agar. The use of 16S rRNA sequencing to identify isolates that grew on BACARA confirmed that the majority of isolates belonged to B. cereus s.l. A total of 81 of the 98 isolates sequenced were tentatively identified as presumptive B. cereus s.l. Pulsed-field gel electrophoresis was carried out on milk and soil isolates from seven farms that were identified as having presumptive B. cereus s.l. No pulsotype was shared by isolates from soil and milk on the same farm. Presumptive B. cereus s.l. was widely distributed within the dairy farm environment

    A role for SNX5 in the regulation of macropinocytosis

    Get PDF
    Background: The mechanisms and components that regulate macropinocytosis are poorly understood. Here we have investigated the role of sorting nexin 5 (SNX5) in the regulation of macropinocytic activity

    Reduced thymic output in elite athletes

    Get PDF
    Athletes undergoing intensive training schedules have chronic exposure to stress-induced hormones such as cortisol that can depress immune function. We compared the circulating levels of T cell receptor excision circles (TREC), a marker of recent thymic emigrants, as well as the levels of naïve and memory subsets in a group of elite endurance athletes and in controls. The athletes showed a reduction in absolute numbers of naïve T cells, particularly in CD4 T cells. In contrast, memory cells were increased. TREC levels in the athletes were significantly reduced compared to age-matched controls. Such changes resemble premature ageing of the T cell component of the immune system. Since thymic production of T cells naturally decline with age, these results raise the concern that prolonging high intensity exercise into the 4th decade of life may have deleterious consequences for athletes' health. © 2014 Elsevier Inc
    • …
    corecore